PROGRAMA DEL CURSO PROPEDÉUTICO

DE LA UMI

I.- SISTEMAS

- 1.1 Introducción.
- 1.2 Propiedades de los sistemas.
- 1.2.1. Sistemas con Memoria (Dinámicos) y sin Memoria (estáticos).
- 1.2.2. Invertibilidad y sistemas inversos
- 1.2.3 Causalidad.
- 1.2.4. Estabilidad.
- 1.2.5. Invariancia en el tiempo.
- 1.2.5. Linealidad.

2.- SISTEMAS LINEALES INVARIANTES EN EL TIEMPO

- 2.1. Sistemas lineales invariantes y sus propiedades en términos de su respuesta al impulso.
- 2.1.1. Representación de señales en términos de impulsos.
- 2.2. Sumatoria de Convolución.
- 2.3. Integral de Convolución.
- 2.3.1. Propiedades de la Convolución y sus implicaciones.
- 2.4. Respuesta al impulso del sistema lineal invariante h(t) como modelo del sistema.
- 2.4.1. Propiedades de los sistemas lineales invariantes en términos de h(t).
- 2.4.1.1. Sistemas dinámicos/estáticos.
- 2.4.1.2. Invertibilidad.
- 2.4.1.3. Causalidad.
- 2.4.1.4. Estabilidad BIBO.

3.- MODELO DE LA FUNCIÓN DE TRANSFERENCIA

- 3.1. Definición de la Función de Transferencia H(s), su relación con h(t).
- 3.2. Señales propias de los sistemas lineales.
- 3.3. Definición de los polos y los ceros de la Función de Transferencia.
- 3.4. Respuesta en frecuencia de los sistemas lineales.

3.5. Identificación de procesos mediante la respuesta en frecuencia.

4.- ECUACIONES DIFRENCIALES LINEALES CON COEFICIENTES CONSTANTES

- 4.1. Solución de ecuaciones diferenciales por el método de la Transformada de Laplace.
- 4.1. Respuesta al impulso de una ecuación diferencial lineal con coeficientes constantes.
- 4.2. Relación de una ecuación diferencial lineal con los modelos de función de transferencia y respuesta al impulso de un sistema lineal.

5.- MODELO EN ESPACIO DE ESTADO DE UN SISTEMA LINEAL INVARIANTE.

- 5.1 Conversión de una ecuación diferencial lineal con coeficientes constantes a un sistema de ecuaciones lineales de primer orden con coeficientes constantes.
- 5.2 Variables de fase. Modelo en espacio de en la forma canónica controlable.
- 5.3 No unicidad del modelo en espacio de estado.
- 5.4 Relación del modelo de estado con los modelos de función de transferencia y la respuesta al impulso.
- 5.5 Problema de asignación de polos para un modelo en espacio de estados obtenido a partir de una función de transferencia.

6.- MODELOS ESTÁTICO Y DINÁMICO, LINEALIZACIÓN, PUNTOS DE EQUILIBRIO Y ESTABILIDAD DE UN SISTEMA LINEAL INVARIANTE.

- 6.1 Ejemplo. Ecuaciones que rigen el comportamiento de la planta.
- 6.2. Puntos de equilibrio del sistema.
- 6.3 Obtención de un modelo dinámico lineal por suposición de señales pequeñas.
- 6.4. Empleo del modelo dinámico del sistema.

BIBLIOGRAFÍA

Alan V. Oppenheim, Alan S. Willsky, Ian T. Young. "Signals and Systems". Prentice Hall Signal Processing Series, 1983.

K. Ogata. "Ingeniería de Control Moderna". Prentice Hall Pearson, quinta edición.

Chi-Tsong Chen. "Linear System Theory and Design". Third edition. The Oxford series in Electrical and Computer Engineering. Oxford University Press, 1999.

Serge Lang. "Linear Algebra". Addison Wesley Publishing Company, 2nd edition, 1979.